5.1.7 problem 8
(a) Let F
be the CDF of the Beta distribution with parameters
a=3,
b=2.
Due to the properties of the CDF,
F must be 0
for x≤0 and
1 for x≥1.
For 0<x<1:
|
F(x)=∫x0f(t)dt=∫x012t2(1−t)dt=12∫x0t2dt−12∫x0t3dt=12(x33−x44)=4x3−3x4 |
Then:
F(x)={0 , for x≤0x3(4−3x) , for 0<x<1
(b)
|
P(0<X<1∕2)=F(1∕2)−F(0)=(12)3(4−32)−0=516 |
(c) The mean of
X
can be calculated by the definition of expectation:
|
E(X)=∫10xf(x)dx=∫1012x3(1−x)dx=12∫10x3dx−12∫10x4dx=12(14−15)=35 |
By the definition of variance:
Var(X)=E(X2)−(EX)2
Let’s calculate the second moment of
X by
LOTUS:
|
E(X2)=∫10x2f(x)dx=∫1012x4(1−x)dx=12∫10x4dx−12∫10x5dx=12(15−16)=25 |
Substituting this value into the definition of variance:
Var(X)=25−(35)2=125