5.2.4 problem 56
E[Z2Φ(z)]=∫∞−∞x2∫x−∞e−x22dx(5.27)
Now
if ∫∞−∞f(z)dz is meant
to be lima→∞∫a−af(z)dz
So
E[z2Φ(z)]=∫x2Φ(x)e−x22dx(5.28)=∫x2Φ(−x)e−x22dx(5.29)=∫x2(1−Φ(x))e−x22dx(5.30)
So
E[Φ(z)z2]=∫x2Φ(x)e(−x22)dx(5.31)=12∫x2e−x22(5.32)=12(5.33)
(b)
P(Φ(z)≤23)=P(z≤Φ−1(23))=Φ(Φ−1(23)) |
(c)