1.5.2 problem 52
Let Ai be the event
that the i-th
student takes the same seat on both days. The desired probability then is
1−P(20⋃i=1Ai). By
inclusion exclusion principle,
P(20⋃i=1Ai)=∑iP(Ai)−∑i<jP(Ai∩Aj)+∑i<j<kP(Ai∩Aj∩Ak)−⋯+(−1)21P(A1∩⋯∩A20),
where P(Ai)=19!20!,
P(Ai∩Aj)=18!20! and
so on by naive definition of probability.
Hence,
P(⋃20i=1Ai)=∑20i=1120−∑1≤i<j≤20120∗19+∑1≤i<j<k≤20120∗19∗18−⋯+120!=1−(202)120∗19+(203)120∗19∗18−⋯+120!=1−12!+13!−⋯+120!≈1−e−1