[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
2.6.2
problem 61
(a)
P
(
D
∣
∣
⋂
n
i
=
1
T
i
)
=
P
(
D
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
)
P
(
⋂
n
i
=
1
T
i
)
=
p
∏
n
i
=
1
a
p
∏
n
i
=
1
a
+
q
∏
n
i
=
1
b
=
p
a
n
p
a
n
+
q
b
n
(b)
P
(
D
∣
∣
⋂
n
i
=
1
T
i
)
=
P
(
D
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
)
P
(
⋂
n
i
=
1
T
i
)
=
p
(
P
(
G
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
,
G
)
+
P
(
G
c
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
,
G
c
)
)
P
(
⋂
n
i
=
1
T
i
)
=
p
(
1
2
+
1
2
a
n
0
)
P
(
G
)
P
(
⋂
n
i
=
1
T
i
∣
∣
G
)
+
P
(
G
c
)
P
(
⋂
n
i
=
1
T
i
∣
∣
G
c
)
=
p
(
1
2
+
1
2
a
n
0
)
P
(
G
)
(
P
(
D
∣
∣
G
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
,
G
)
+
P
(
D
c
∣
∣
G
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
c
,
G
)
)
+
P
(
G
c
)
(
P
(
D
∣
∣
G
c
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
,
G
c
)
+
P
(
D
c
∣
∣
G
c
)
P
(
⋂
n
i
=
1
T
i
∣
∣
D
c
,
G
c
)
)
=
p
(
1
2
+
1
2
a
n
0
)
1
2
+
1
2
(
p
a
n
0
+
(
1
−
p
)
b
n
0
)
=
p
(
1
+
a
n
0
)
1
+
p
a
n
0
+
(
1
−
p
)
b
n
0
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]