2.6.7 problem 66
Let Si,k be the event
that sum after i
rolls of the die is k.
Let l denote the roll
after which k≥100. Let
Xi be the event that
the die lands on i.
P(Sl,100)=99∑i=94P(Sl−1,i)P(X100−i∣∣
∣∣Sl−1,i)=1699∑i=94P(Sl−1,i)
P(Sl,101)=99∑i=95P(Sl−1,i)P(X101−i∣∣
∣∣Sl−1,i)=1699∑i=95P(Sl−1,i)
P(Sl,102)=99∑i=96P(Sl−1,i)P(X102−i∣∣
∣∣Sl−1,i)=1699∑i=96P(Sl−1,i)
P(Sl,103)=99∑i=97P(Sl−1,i)P(X103−i∣∣
∣∣Sl−1,i)=1699∑i=97P(Sl−1,i)
P(Sl,104)=99∑i=98P(Sl−1,i)P(X104−i∣∣
∣∣Sl−1,i)=1699∑i=98P(Sl−1,i)
P(Sl,105)=99∑i=99P(Sl−1,i)P(X105−i∣∣
∣∣Sl−1,i)=1699∑i=99P(Sl−1,i)
Thus, Sl,100
is the most likely.