[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
2.6.13
problem 72
(a)
p
n
=
a
n
a
+
(
1
−
a
n
)
b
=
(
a
−
b
)
a
n
+
b
a
n
+
1
=
a
n
a
+
(
1
−
a
n
)
(
1
−
b
)
=
a
n
(
a
+
b
−
1
)
+
1
−
b
(b)
p
n
+
1
=
(
a
−
b
)
a
n
+
1
+
b
p
n
+
1
=
(
a
−
b
)
(
(
a
+
b
−
1
)
a
n
+
1
−
b
)
+
b
p
n
+
1
=
(
a
−
b
)
(
(
a
+
b
−
1
)
p
n
−
b
a
−
b
+
1
−
b
)
+
b
p
n
+
1
=
(
a
+
b
−
1
)
p
n
+
a
+
b
−
2
ab
(c)
Let
p
=
lim
n
→
∞
p
n
. Taking the limit of both sides of the result of part
b
, we get
p
=
(
a
+
b
−
1
)
p
+
a
+
b
−
2
ab
p
=
a
+
b
−
2
ab
2
−
(
a
+
b
)
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]